DETERMINATION OF THE PRIMARY THERMAL-RADIATION.
CHARACTERISTICS OF SEMITRANSPARENT FILLED
POLYMER COATINGS

L. 8, Slobodkin and Yu. M. Sotnikov-Yuzhik UDC 536.3

Equations are derived for calculating the primary thermal-radiation constants of a hetero-
geneous semitransparent material, These constants are determined for the case of a filled
epoxy coating.

Questions associated with the transfer of thermal radiation play a leading part in many fields of
modern technology [1, 13]. The study of radiant heat transfer in heterogeneous media is especially com-
plicated. When radiation interacts with such a medium, scattering occurs at local inhomogeneities. The
scattering effects greatly complicate the analysis of radiation transfer in scattering media. Many papers
have been published in relation to these problems, but the majority of these have been mainly concerned
with mathematical procedures for solving the transfer equation. At the same time experimental methods
of determining the primary thermal-radiation characteristics and establishingthe radiant-transfer singulari~
ties in a semitransparent heterogeneous material are not entirely satisfactory. The main reason for this
is that there are no convenient methods of obtaining these coefficients from measurements of the external
thermal-radiation characteristics R, T,). Among existing methods we may indicate fairly simple pheno-
menological models relating the hemispherical transmission and reflecting powers to the primary coeffi-
cients of the material. The best known of these is the two-flux Gurevich —Kubelka — Munk approximation
[2, 3]. A shortcoming of these methods is the fact that the proposed transcendental equations are not analy-
tically soluble for the unknown constants., A number of methods were developed in [4, 5]. but these cannot
be used for the situations of present interest, in which reflection of the incident radiation occurs at the
interface between the ambient and the continuous phase containing the dispersed scattering centers.

We attempted to develop an experimental —analytical method of determining the primary spectral
thermal-radiation characteristics of an absorbing and scattering material, allowing for the effects of re-
flection at the interface, and on this basis to determine the characteristics in question for a filled polymer
material of the EKM type. From the point of view of transferring thermal radiation, this material is, on
the one hand, semitransparent, and, on the other hand, a strongly scattering and absorbing medium. On
the basis of these physical considerations it is clear that, for such materials, in addifion to determining
the external thermal-radiation characteristics R,, T, g3), it is very important to know the primary co-
efficients of the elementary volume or layer which would characterize the properties of the actual material
4, 6].

A compound polymer coating may be approximated by the following physical model. Let the object
of investigation be a substance (polymerized resin) with optically smooth surfaces of thickness d and with
a refractive index of my =m — in,. For our own

TABLE 1. Value of ﬁx, 5y particular case we may put m, =n, to a fair degree
of accuracy, since in the case of dielectrics the in-
Sample thickness, - |Spectral _ N fluence of the absorption coefficient ¥, on the reflec-
PR R range, j " * ting and refracting properties of the radiation is very
slight (nK »>w) [11]. We shall consider the substance
1200 ; 1770 0,9—2,2 i 1,62 0,23.10-4 with refractive index n, asan optically homogeneous
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Fig. 1. Analytical model of radiation transfer in a layer of scattering
and absorbing material,

Fig. 2. Spectral transmission coefficient of the base of the compound
EKM: 1) d=1200u; 2) d=1770 u; A, u.

{not radiation scattering) matrix containing scattering particles (for example, the inorganic filler and pig-
ment) with a refractive index differing from that of the matrix. Owing to the jump in refractive index at
the phase interface these particles scatter the incident thermal radiation. Thus, this model of the compound
coating represents the most complicated case encountered when considering radiation transfer, in which
allowance has to be made for the influence of the reflecting and refracting interface between the ambient
(air) and the matrix. The existence of this boundary should have a major effect on the reflecting and ab-
sorbing properties of the layer,

Let us give some more detfailed consideration to the propagation of radiation in a mode!l of this kind.
If directional radiation falls on a plane-parallel layer (Fig. 1), the transmission of the interface may easily
be calculated by means of the Fresnel reflection and refraction laws. In the case of homogeneous and dif-
fuse incident radiation of intensity I, the reflecting power of the surface may be found by integrating the ex-
pressions for the reflected and incident fluxes over the whole solid angle 2r:
Eréﬂ _ ¥ oman {PpCOS Ydo

inc Vomanfcospdo @)

After passing through the medium —air interface the radiation undergoes multiple scattering at op-
tical inhomogeneities. This has the effect that inside the material the radiation changes its angular struc-
ture very considerably, and the initially directional radiation may be converted into radiation almost diffuse
as regards its angular distribution. Let us now consider the reflection of the interface on receiving radia-
tion directed outward from inside the sample., The reflecting power of this flux will be far higher than that
of the former. This is because radiation takes place through the interface from a dense into a less dense
medium, The important factor which distinguishes the internal incidence of the radiation from the external
is the fact that not all the radiation incident upon the interface is refracted into the ambient, because of
the phenomenon of total internal reflection, If the radiation is incident at an angle ¢ greater than the criti-
cal angle @ope the energy will be totally reflected (the value of the critical angle depends on the refractive
index of the material and may be calculated from Snell's law).

Let us calculate how much of the total flux incident upon the interface within the material will be re-
flected with a reflection coefficient equal to 1 (as before, the incident radiation is agsumed homogeneous
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and diffuse, with an intensity I). The flux of radiation E, fall-
5

2n

) E)
ing within the solid angle w = j 5 sin pdpdy 1s equal to
N } 0 are sin-’lT
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Pi— E,={dy I cos @ sin gde, - @
\‘< ‘ K,\b (5 arc sinji
g2 - x where arc sin 1/n=¢.,. (this follows from Snell's law).
§ The total flux E falling in the whole solid angle =27,
4’5 /] 5 za\A 2q 21
E= S d 5 1 cos @ sin pde. 3)
8
Fig. 3. Hemispherical transmission
coefficient of the compound EKM as a The proportion of the total radiation falling on the inter-
function of the layer thickness d, mm: face at an angle exceeding the critical value equals E{/E =1 <
D A=1.05p; 2) A=1.28y, 1/n%, If in order to be specific we put n=1,6 (this is the right

order of magnitude for n in the present case), the contribution
to the reflecting power of the interface simply arising from total internal reflection is about 0.6, The
second part of the flux falling in a cone of solid angle 2¢,,. is divided into two components. One component
is reflected in accordance with the Fresnel law, the other passes through the interface. At the same time
the reflecting power for the incidence of radiation from outside is 0.09 in the case of a diffuse flux and
0.05 . in that of directional radiation [9].

Thus, after considering the transfer of radiation in a scattering layer it is easy to understand the im-
portance of allowing for reflection at the boundary surfaces. A high value of the reflecting power for in-
ternal incidence of the radiation reduces the probability of its leaving the layer, so that the neglect of
boundary effects creates serious errors. The absorbing power of the layer calculated without allowing
for reflections at the boundary may be too low, in some cases by a factor of several times [7].

The two-flux approximation was used in [6] to obtain equations relating the internal optical constants
of an elementary layer to the experimentally measured hemispherical thermal-radiation characteristics
(T, 2 OF Ry »7), without allowing for the boundary reflections. A consideration of the propagation of radi-
ation in a plane-parallel layer consisting of a continuous, optically homogeneous substance containing uni-
formly distributed scattering centers leads to the conclusion that this problem ought really to be solved
with new boundary conditions. The analytical model employed is shown in Fig. 1. The general solution
of the well-known system of equations in the two-flux method of [4] may be written [8]

1 =B, (1 —B)exp(0x) + By (1 + P) exp (—ox),
L = B, (1 + B)exp(ox) + B, (1 — B) exp (— ox) “)
for the following boundary conditions:
Pl Lo, L=rI, ' (5)

where I; is the intensity of the flux incident upon the outer surface; r' is the reflecting power of the sur-
faces with coordinates x=0 and x =d for the incidence of radiation inside the layer. As already indicated,
the order of magnitude of the reflecting power of the radiation I; from the surface x=0 is extremely small

(~5%) and need not be considered in the boundary conditions.

As indicated in [8, 6], the primary thermal-radiation constants g8 and ¢ are uniquely related to the
absorption coefficient k and the secattering coefficient s of the elementary layer by the following relationships;

% ;e
B: Vm ando'——]/ k(k"y—QS).

After solving the system of equations {¢) with boundary conditions (5) we obtain an expression for
the hemispherical transmission of a layer of thickness d:
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TABLE 2. Values of oy, By

ﬁ' Txlf-[n mmlnfm’{ ;;ﬁ;llm
1,28; 0,32 t 0,43 ] ,62 I 0,14 , 0,07 ‘0.056] 0,64 ) 6,5 , 0,062
1,05 0.21 | 0.3 1,62 0,14 0,07 [0,056 0,64 0,56 0,103
. I9(1 —r") 48
T2ﬂ= J; = (1+rl)‘2 e ?
i [l-—r'+ﬁ“—-l——,—-]l/Az—fl—}—Qﬁ(l—}—r’)A (6)
—r
where
A==exp (od) + exp (— ad). )

Writing down expressions of type (6) for Ty ,. and Ty ,, and taking their ratio, after certain trans-
formations we arrive at the equation )

A=T‘,,(1+r'+ )
T Ty 2 @®)

where T, ,. and Ty ,; are the hemispherical transmission coefficients of samples of thicknesses d, and
dy, respectively, in which d; = 2d,.

Solving the system of equations (7) and (8) we obtain an expression for the constant o:

1, A+VA—4

g = re In ——- (9)
The solution of (6) for the other constant gives the following expression for §;
—ac ac) —b
p =t Vier—b, (10)
where
2 1+r T
a= A A ; b = - ; ;= /" T
P el 1) 1—r =V m=1-

Equations (9) and (10) give an explicit analytical relationship between the unknown primary coeffici-
ents and the experimentally measured hemispherical transmission coefficients of two layers of scattering
material with different thicknesses d; and d,.

We may show that the constant o equals the attenuation coefficient of the incident radiation in a layer
of heterogeneous material. Usings Eqs. (4) and (5) we find the values of the integration constants B; and
B, for a layer of infinite thickness (d =x):

B, =0, B,= LB+ 1—r] |
BA—r") HBA P4 (11 (11)

From Eq. (4) we then obtain the following equation for the flux of radiation at a depth x:

o BOEN =10 |,
R Py o T ey A a2)

The expression in the curly brackets is equal to a constant quantity, and we may rewrite (12) in the

form
[(x) = K[-i-e_‘” - (13)
The latter relationship may be considered as the attenuation law of radiation propagating in a scat-
tering and absorbing medium. Equation (13) differs from the well-known Bouguer law in that, firstly, it

is applicable to a layer with a zero transmission (infinitely dense layer) and, secondly, the attenuation is
a function of the two constants oy and g,.
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In order to determine the constants oy and B from Egs. (9) and (10) we must knowthe parameter r',
the reflecting power of the sample —air interface for the internal incidence of the radiation. This quantity
cannot be measured experimentally. However, the value of ry may be calculated if we assume that the,
flux of radiation falling on the boundary surface from inside the sample is diffuse. This approximation
will be the more accurate, the greater the scattering power of the material under test, In this case the
parameter r;\ is calculated by the Gershun equation [9]:

A

T (14)

r'=1——~1——' .
3

A ni

The problem of the angular distribution of the incident radiation deserves attention, since one of the
assumptions of the two-flux approximation is that the flux falling on the sample is diffuse., Measuring the
hemispherical Ry jq and Ty o, with diffusely incident radiation is, nevertheless, a very difficult problem.
All modern spectrophotometers have collimated incidence of the radiation on the sample. The question
arises as to how justifiable it is to use the two-flux approximation in such an experimental situation. This
question has been studied on a number of occasions [10, 11] and it has been concluded that the diffuse radi-
ation may be replaced by directional radiation without introducing any serious errors. This assertion is
valid for large optical thicknesses and high concentrations of the scattering particles [10]. These require-
ments are satisfied by the majority of filled polymer coatings.

As already indicated, our subject for studying the thermal-radiation characteristics was a compound
coating of the EKM type. In its physical structure this material corresponds to the model which we have
been considering in connection with the two-flux method (one requiring due allowance for boundary reflec-
tions). The values of r, were calculated from the well-known Fresnel formula for directional radiation,
using existing data as to the spectral refractive index of the binder. The refractive index was determined
by the method proposed in [12], The underlying idea of this method lies in the fact that, instead of the ac-
curate but very complicated method of calculating the constants n, and w, forming the complex refractive
index m, with full allowance for the selectivity of the absorption spectrum, anapproximate method (which
still preserves the selective character of the absorption spectrum of the test material) is used. For this
purpose the spectrum of the transmission coefficient (Ty) is divided into several regions, and it is assumed
that in each of these regions, bounded by wavelengths ); and %,, the optical constants remain independent
of the wavelength. The coefficients ny and %, are calculated by means of formulas in which the original
data are the experimentally obtained transmissions Ty and T, of two samples with thicknesses d; and d,.

i The binding component of the material under consideration was the hardened base of the compound
EKM (main ingredients epoxy resin ED-5 and maleic anhydride).

The average refractive index was determined for the spectral range 0.9-2.2 4. Figure 2 shows the
spectral transmission coefficients of the material in question for two different thicknesses of the layer.
Table 1 shows thg main experimental parameters and the calculated average values ﬁ,\ and QX for the base
of the compound EKM. The samples were treated so as to produce the maximum degree of hardening,
which was monitored by a spectral method involving the combined absorption band of the epoxy groups
(4520 cm™!). The primary thermal-radiation characteristics of the compound EKM were determined for
two wavelengths and calculated by means of Eqs. (9) and (10). The resultant values of ¢y and g3 and also
the original experimental data, are presented in Table 2.

The attenuation coefficient at a wavelength of 1.28 4 was considerably greater thanthat atawavelength
of 1.05 . This fact may be explained by remembering that the wavelength of 1.28  lies in the neighbor-
hood of the absorption band (Fig. 2) of the binding substance, and a considerable proportion of the attenua-
tion coefficient arises from the absorption of the radiation.

Figure 3 shows the directional hemispherical transmission coefficient of the compound EKM as a
function of the thickness of the layer for wavelengths of 1.05 and 1.28 i, calculated by means of Eq. (6),
and the experimentally measured values of T,“21r for sample thicknesses of 0.12, 0.16, 0,20, and 0,25 mm,
We see from Fig. 3 that the experimental points T, ;. are close to the calculated values, the difference
between these values being the smaller. the greater the optical thickness of the sample, in agreement with
the basic principles of the two-flux approximation.

Let us apply Eq. (13) to an infinitely dense layer in order to determine the depth of penetration of
monochromatic radiation at a wavelength of 1.28 u. The calculated value of the coefficient K for the resul-
tant value of the coefficient g, (Table 2) equals 2.30. Putting x=2/0 in (13) we find that at a depth of
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d=0.31 mm in an infinitely dense layer of the compound EKM an incident flux of density I; is weakened by
a factor of 3.22,

Thus, the proposed method of determining the primary thermal-radiation characteristics allowing:
for surface reflection may be used when studying the transfer of thermal radiation in heterogeneous semi-
transparent dielectric materials.

NOTATION

Ry, Tx, spectral reflection and transmission coefficients of a layer of thickness d; £ spectral
emissivity; n,, spectral refractive index of the material; w,, spectral absorption coefficient; p,, reflec-
tion coefficient of the surface for a ray incident at an angle ¢; ¢, azimuthal angle of incidence o}p the ray;
oy and gy, primary thermal-radiation constants of the transparent material; r,, reflection coefficient for
radiation incident on the sample from the ambient; ri, reflection coefficient for radiation incident on the
interface from inside the sample.

LITERATURE CITED

A. 8. Nevskii, Heat Transfer in Open-Hearth Furnaces [in Russian], Metallurgiya, Moscow (1963).
M. M. Gurevich, Tr. Gos. Opt. Inst, Leningr., 6, No, 57, 1 (1931).

P. Kubelka and F. Munk, Z. Tech., Phys., 12, No. 1la, 593 (1931).

S. G. II'yvasov and V. V. Krasnikov, Inzh.-Fiz. Zh., 15, 273 (1968).

8. G. I'yasov and V., V. Krasnikov, Inzh,-Fiz. Zh., 17, 325 (1969).

L. S. Slobodkin and Yu. M. Sotnikov-Yuzhik, Inzh.-Fiz. Zh., 26, No. 2 (1974).

Hottel et al., Teploperedacha, Ser, S., No. 1, 57 (1968).

H. C. Hamaker, Philips Res. Reports, 2, 55 (1947).

9. A.A. Gershun, Tr. Gos. Opt. Inst. " Leningr., 11, No. 99, 43 (1936).

10. F, Kottler, JOSA, 50, 483 (1936).

1i. J. W. Ryde, Proc. Roy. Soc. (London), A131, 451 (1931),

12, T'enChen, Teploperedacha, Ser. S, 42 (1972).

13. V. N. Adrianov, Principles of Radiative and Complex Heat Transfer [in Russian], Fnergiya, Moscow
(1972).

.

W~ S Wk WN

603



